Forecasting Case Analysis

Forecasting Case Analysis

MGT 3332

Spring 2018

 

 

The Fresh Detergent Case

 

Enterprise Industries produces Fresh, a brand of liquid detergent. In order to more effectively manage its inventory, the company would like to better predict demand for Fresh. To develop a prediction model, the company has gathered data concerning demand for Fresh over the last 33 sales periods. Each sales period is defined as one month. The variables are as follows:

 

Demand = Y = demand for a large size bottle of Fresh (in 100,000)

Price = the price of Fresh as offered by Ent. Industries

AIP = the average industry price

ADV = Ent. Industries Advertising Expenditure (in $100,000) to Promote Fresh in the sales period.

DIFF = AIP – Price = the “price difference” in the sales period

 

1- Download the data from Course Blackboard site into Excel spreadsheet.

 

2- Make time series scatter plots of all five variables (five graphs). Insert trend line, equation, and R-squared. Observe graphs and provide interpretation of results.

 

 

 

· In this graph, the demand seems to be fluctuating between highs and lows. If the demand increases for a certain period of time, then it comes back down for almost the same period of time.

 

 

· In this graph, there is a steady increase in the advertisement done by the company. In other words, Enterprise Industries have invested more and more in advertisement and in promoting their product as time increases.

 

 

 

 

· In this scatter plot, the price differences compared to the industry’s average has been very inconsistent. Majority of the time, Fresh’s price has been lower than the average industry price.

 

· The Average Price Industry (API) varies greatly. The trend line shows a slight increase, but it is very inconsistent.

 

 

 

 

· The scatter plot shows that Fresh’s prices have been consistent; staying between $5 to $7 max.

 

 

 

 

 

 

3- Construct scatter plots of Demand vs. DIFF and Demand vs. ADV, Demand vs. AIP, and Demand vs. Price. Insert fitted line, equation, and R-squared. Observe graphs and provide interpretation. Note that Demand is always on the Y axis.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4- Obtain the correlation matrix for all six variables and list the variables that have strong correlation with Demand. High correlation is r > 0.50. Explain your findings in plain language.

 

 

PERIOD

PRICE

AIP

DIFF

ADV

DEMAND

PERIOD

1

         

PRICE

-0.38396

1

       

AIP

0.290259

-0.23374

1

     

DIFF

0.426187

-0.76244

0.807343

1

   

ADV

0.814258

-0.55717

0.299438

0.537413

1

 

DEMAND

0.691026

-0.64098

0.299191

0.588114

0.783047

1

 

 

 

 

 

 

 

 

 

 

5- Use 3-month and 6-month moving averages to predict the demand for March 2018. Find MAD for both forecasts and identify the preferred one based on each calculation. Is the moving average suitable method for forecasting for this data set? Explain your reasoning.

 

 

3m MA

6m MA

 

17.6666667

18.16666667

     

MAD=

1.02282051

1.353205128

 

 

6- Use Exponential smoothing forecasts with alpha of 0.1, 0.2, …, 0.9 to predict March 2018 demand. Identify the value of alpha that results in the lowest MAD.

 

 

 

Alpha

Forecast

MAD

0.1

17.2094

1.225115

0.2

17.73848

1.043501

0.3

17.77822

0.946974

0.4

17.67187

0.872781

0.5

17.5341

0.812573

0.6

17.4067

0.74903

0.7

17.30053

0.690569

0.8

17.21533

0.643283

0.9

17.14885

0.604965

 

 

 

7- Find the monthly seasonal indices for the demand values using Simple Average (SA) method. Find the de-seasonalized demand values by dividing monthly demand by corresponding seasonal indices.

 

Month

2015

2016

2017

2018

Monthly

Seasonal Indices

         

Avg.

 

Jan

 

13.9

16

17.5

15.8

0.98

Feb

 

13.3

15.2

17.1

15.2

0.94

Mar

 

13.12

15.3

 

14.2

0.88

Apr

 

13.8

15.9

 

14.9

0.92

May

 

14.8

16.2

 

15.5

0.96

Jun

14.4

15.3

17.5

 

15.7

0.97

Jul

15.3

16.3

18.4

 

16.7

1.03

Aug

16.5

17.5

19.4

 

17.8

1.10

Sep

16.1

17.4

19.1

 

17.5

1.08

Oct

16

17.1

18.7

 

17.3

1.07

Nov

15.5

16.8

18.2

 

16.8

1.04

Dec

15.2

16.5

18.4

 

16.7

1.03

 

 

 

 

Grand Avg.

=

16.2

12.00

 

 

 

8- Use regression to perform trend analysis on the de-seasonalized demand values. Is trend analysis suitable for this data? Find MAD and explain the Excel Regression output (trend equation, r, r-squared, goodness of model).

 

SUMMARY OUTPUT

 

Regression Statistics

Multiple R

0.944055

R Square

0.89124

Adjusted R Square

0.887732

Standard Error

0.422078

Observations

33

 

 

 

 

 

 

ANOVA

         

 

df

SS

MS

F

Significance F

Regression

1

45.25579

45.25579

254.032

1.7435E-16

Residual

31

5.522648

0.17815

   

Total

32

50.77844

 

 

 

           

 

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Intercept

14.08368

0.150353

93.6705

1.34E-39

13.77703166

PERIOD

0.122986

0.007716

15.93838

1.74E-16

0.107248571

 

Demand = 14.08 + .1229(Period)

 

   
           
           

RESIDUAL OUTPUT

MAD=

0.312893

   
           

Observation

Predicted Des. Demand

Residuals

Abs. Res.

   

1

14.20667

0.597063

0.597063

   

2

14.32965

0.518488

0.518488

   

3

14.45264

0.540527

0.540527

   

4

14.57562

0.276575

0.276575

   

5

14.69861

0.289292

0.289292

   

6

14.8216

0.071704

0.071704

   

7

14.94458

-0.22293

0.222933

   

8

15.06757

-0.83815

0.838153

   

9

15.19056

-1.03792

1.037916

   

10

15.31354

-0.37978

0.379783

   

11

15.43653

-0.40573

0.405731

   

12

15.55951

-0.11553

0.115528

   

13

15.6825

0.046462

0.046462

   

14

15.80549

0.013121

0.013121

   

15

15.92847

-0.02663

0.026631

   

16

16.05146

-1.30E-05

1.34E-05

   

17

16.17444

-0.15612

0.156124

   

18

16.29743

-0.15501

0.155015

   

19

16.42042

-0.43968

0.439678

   

20

16.5434

-0.16422

0.164219

   

21

16.66639

-0.49194

0.491945

   

22

16.78938

0.625755

0.625755

   

23

16.91236

0.405731

0.405731

   

24

17.03535

-0.13044

0.130444

   

25

17.15833

0.832309

0.832309

   

26

17.28132

0.575267

0.575267

   

27

17.40431

0.224021

0.224021

   

28

17.52729

0.092397

0.092397

   

29

17.65028

-0.13317

0.133168

   

30

17.77326

-0.28565

0.285648

   

31

17.89625

-0.07531

0.075306

   

32

18.01924

-0.1045

0.104504

   

33

18.14222

0.054027

0.054027

   

 

 

9- Find the seasonally adjusted trend forecasts for March through May 2018.

 

 

Seasonally Adjusted Trend Forecast

   

Mar. Demand =

18.26521

0.878546

16.04683

Apr. Demand =

18.3882

0.918115

16.88248

May. Demand =

18.51118

0.958302

17.7393

 

 

10- Perform simple linear regression analysis with ADV as the independent variable. Write the complete equation, find MAD and explain the Excel Regression output. Make sure to use the de-seasonalized demand data for this model and all future models.

 

 

SUMMARY OUTPUT

 

Regression Statistics

Multiple R

0.830063

R Square

0.689004

Adjusted R Square

0.678972

Standard Error

0.713734

Observations

33

 

 

ANOVA

           

 

df

SS

MS

F

Significance F

 

Regression

1

34.98655

34.98655

68.67976

2.32E-09

 

Residual

31

15.79189

0.509416

     

Total

32

50.77844

 

 

 

 
             

 

Coefficients

Standard Error

t Stat

P-value

Lower 95%

 

Intercept

9.102521

0.86234

10.55561

8.67E-12

7.343767

 

ADV

0.96082

0.115938

8.287325

2.32E-09

0.724362

 
 

Demand = 9.10 + .9608(ADV)

     
             
             

RESIDUAL OUTPUT

MAD=

0.575824

     
             

Observation

Predicted Des. Demand

Residuals

Abs. Res.

     

1

14.19486

0.608864

0.608864

     

2

15.58805

-0.73991

0.739913

     

3

16.06846

-1.0753

1.075298

     

4

16.1165

-1.26431

1.264305

     

5

16.02042

-1.03252

1.03252

     

6

15.34785

-0.45455

0.454548

     

7

15.58805

-0.8664

0.866403

     

8

15.72257

-1.49315

1.493152

     

9

14.67527

-0.52264

0.522636

     

10

14.38703

0.54673

0.54673

     

11

15.34785

-0.31705

0.317052

     

12

15.10764

0.336342

0.336342

     

13

15.82826

-0.0993

0.099296

     

14

15.73218

0.08643

0.08643

     

15

15.63609

0.265747

0.265747

     

16

15.63609

0.415351

0.415351

     

17

15.92434

0.09398

0.09398

     

18

15.82826

0.314158

0.314158

     

19

15.63609

0.344644

0.344644

     

20

15.34785

1.031336

1.031336

     

21

16.88516

-0.71072

0.710715

     

22

16.50083

0.914298

0.914298

     

23

16.1165

1.201588

1.201588

     

24

16.30867

0.596235

0.596235

     

25

16.88516

1.105483

1.105483

     

26

17.07732

0.779263

0.779263

     

27

17.46165

0.166675

0.166675

     

28

17.94206

-0.32237

0.322372

     

29

17.17341

0.343705

0.343705

     

30

17.55773

-0.07012

0.070116

     

31

18.23031

-0.40936

0.409363

     

32

18.03814

-0.12341

0.123411

     

33

17.84598

0.350271

0.350271

     

 

 

11- Repeat part (10) with DIFF as the independent variable.

 

SUMMARY OUTPUT

 

Regression Statistics

       

Multiple R

0.506745

       

R Square

0.25679

       

Adjusted R Square

0.232816

       

Standard Error

1.103353

       

Observations

33

       
           

ANOVA

         

 

df

SS

MS

Significance F

 

Regression

1

13.0394

13.0394

10.71096

 

Residual

31

37.73904

1.217388

   

Total

32

50.77844

 

 

 
           

 

Coefficients

Standard Error

t Stat

P-value

 

Intercept

15.79168

0.224876

70.22392

9.70E-36

 

DIFF

1.730323

0.528704

3.272761

0.002618

 
 

Demand = 15.79+1.730(DIFF)

   
           
           

RESIDUAL OUTPUT

MAD =

0.94626

   
           

Observation

Predicted Des. Demand

Residuals

Abs. Res.

   

1

15.27258

-0.46885

0.46885

   

2

16.22426

-1.37612

1.376117

   

3

16.82987

-1.83671

1.836705

   

4

15.79168

-0.93948

0.939477

   

5

16.22426

-1.23635

1.236355

   

6

16.13774

-1.24444

1.24444

   

7

16.05122

-1.32957

1.329574

   

8

15.01303

-0.78361

0.783614

   

9

14.49393

-0.34129

0.341295

   

10

15.44561

-0.51185

0.511853

   

11

16.13774

-1.10694

1.106944

   

12

15.96471

-0.52072

0.520723

   

13

16.48381

-0.75484

0.754843

   

14

16.57032

-0.75171

0.751715

   

15

16.39729

-0.49545

0.495448

   

16

16.31077

-0.25933

0.259328

   

17

16.65684

-0.63852

0.638517

   

18

16.65684

-0.51442

0.514422

   

19

16.48381

-0.50307

0.503067

   

20

15.70516

0.674024

0.674024

   

21

15.70516

0.469285

0.469285

   

22

15.61864

1.796486

1.796486

   

23

16.13774

1.180351

1.180351

   

24

15.96471

0.940195

0.940195

   

25

16.65684

1.333805

1.333805

   

26

16.82987

1.026717

1.026717

   

27

15.70516

1.923167

1.923167

   

28

15.79168

1.828013

1.828013

   

29

15.87819

1.638919

1.638919

   

30

17.43548

0.052134

0.052134

   

31

17.34897

0.471978

0.471978

   

32

17.0029

0.911831

0.911831

   

33

16.82987

1.36638

1.36638

   

 

 

 

12- Construct multiple linear regression model with Period, AIP, DIFF, and ADV as independent variables. Formulate the equation, find MAD, and explain the output. Rank variables based on their degree of contribution to the model. Observe significant F, R-squared, and p-values and explain.

 

SUMMARY OUTPUT

         
             

Regression Statistics

         

Multiple R

0.957267

         

R Square

0.91636

         

Adjusted R Square

0.904412

         

Standard Error

0.389463

         

Observations

33

         
             

ANOVA

           

 

df

SS

MS

F

Significance F

 

Regression

4

46.53136

11.63284

76.6925

1.13E-14

 

Residual

28

4.247084

0.151682

     

Total

32

50.77844

 

 

 

 
             

 

Coefficients

Standard Error

t Stat

P-value

Lower 95%

 

Intercept

18.14138

3.245942

5.588941

5.56E-06

11.49237

 

PERIOD

0.107414

0.012455

8.624202

2.27E-09

0.081901

 

AIP

-0.77289

0.501085

-1.54243

0.134197

-1.79931

 

DIFF

0.803895

0.376051

2.137726

0.04141

0.033589

 

ADV

0.089443

0.122669

0.729143

0.47197

-0.16183

 
 

Demand = 18.14 + .107(Period) – .772(AIP) + .803(DIFF) + .089(ADV)

 
             
             

RESIDUAL OUTPUT

MAD =

0.270967

     
             

Observation

Predicted Des. Demand

Residuals

Abs. Res.

     

1

13.99892

0.804809

0.804809

     

2

14.52359

0.324549

0.324549

     

3

14.72522

0.267942

0.267942

     

4

14.81851

0.033693

0.033693

     

5

15.00202

-0.01411

0.014114

     

6

15.04527

-0.15197

0.151969

     

7

15.17349

-0.45184

0.451844

     

8

14.7338

-0.50439

0.504388

     

9

14.65713

-0.5045

0.504496

     

10

14.90935

0.024412

0.024412

     

11

15.35047

-0.31968

0.319676

     

12

15.43243

0.01156

0.01156

     

13

15.7708

-0.04184

0.04184

     

14

15.83218

-0.01357

0.013571

     

15

15.92755

-0.02571

0.025705

     

16

15.99477

0.056679

0.056679

     

17

16.2125

-0.19418

0.194183

     

18

16.23368

-0.09127

0.091268

     

19

16.3974

-0.41666

0.416659

     

20

16.38674

-0.00755

0.007553

     

21

16.63726

-0.46282

0.462816

     

22

16.74599

0.669139

0.669139

     

23

16.86557

0.452518

0.452518

     

24

17.10371

-0.19881

0.198807

     

25

17.23855

0.752095

0.752095

     

26

17.32831

0.52828

0.52828

     

27

17.4127

0.215627

0.215627

     

28

17.52774

0.091948

0.091948

     

29

17.52651

-0.0094

0.009396

     

30

18.08405

-0.59643

0.596431

     

31

18.17523

-0.35429

0.354288

     

32

18.02669

-0.11196

0.111958

     

33

17.95854

0.237712

0.237712

     

 

 

 

13- Perform multiple linear regression analysis with Period, DIFF, and ADV as independent variables. Formulate the equation and find MAD. Which variable is the most significant predictor of demand? Rank the independent variables based on their degree of contribution to the model. Observe significant F, R-squared, and p-values and explain.

 

SUMMARY OUTPUT

         
             

Regression Statistics

         

Multiple R

0.953548

         

R Square

0.909254

         

Adjusted R Square

0.899866

         

Standard Error

0.398616

         

Observations

33

         
             

ANOVA

           

 

df

SS

MS

F

Significance F

 

Regression

3

46.17049

15.39016

96.85759

3.26E-15

 

Residual

29

4.607949

0.158895

     

Total

32

50.77844

 

 

 

 
             

 

Coefficients

Standard Error

t Stat

P-value

Lower 95%

 

Intercept

13.25152

0.71337

18.57595

1.20E-17

11.79252

 

PERIOD

0.104104

0.012557

8.290507

3.86E-09

0.078422

 

DIFF

0.334995

0.226558

1.47863

0.15002

-0.12837

 

ADV

0.146603

0.119685

1.224904

0.230468

-0.09818

 
 

Demand = 13.25 + .104(Period) + .335 (Diff) + .147 (ADV)

 
             
             

RESIDUAL OUTPUT

MAD =

0.278648

     
             

Observation

Predicted Des. Demand

Residuals

Abs. Res.

     

1

14.03213

0.771603

0.771603

     

2

14.53305

0.315088

0.315088

     

3

14.82771

0.165459

0.165459

     

4

14.73814

0.114056

0.114056

     

5

14.91134

0.076566

0.076566

     

6

14.89607

-0.00277

0.002768

     

7

15.02007

-0.29842

0.298424

     

8

14.94371

-0.71429

0.714289

     

9

14.78751

-0.63487

0.634874

     

10

15.03188

-0.09813

0.098125

     

11

15.41659

-0.38579

0.385793

     

12

15.45054

-0.00656

0.006558

     

13

15.7651

-0.03614

0.036137

     

14

15.87129

-0.05269

0.052686

     

15

15.92724

-0.0254

0.025396

     

16

16.01459

0.036853

0.036853

     

17

16.22968

-0.21136

0.211355

     

18

16.31912

-0.1767

0.176704

     

19

16.3604

-0.37967

0.379665

     

20

16.26978

0.109405

0.109405

     

21

16.60845

-0.434

0.434004

     

22

16.63716

0.777968

0.777968

     

23

16.78312

0.534969

0.534969

     

24

16.88305

0.021854

0.021854

     

25

17.20911

0.781529

0.781529

     

26

17.37604

0.480549

0.480549

     

27

17.32104

0.307291

0.307291

     

28

17.51519

0.104498

0.104498

     

29

17.51876

-0.00165

0.001653

     

30

17.983

-0.49539

0.495388

     

31

18.17298

-0.35204

0.352037

     

32

18.18077

-0.26603

0.266033

     

33

18.22205

-0.0258

0.0258

     

 

 

 

14- Use the model obtained in parts 13 and make forecasts for the following months. Make sure to seasonalize final forecasts.

 

Demand = 13.25 + .104(Period) + .335 (Diff) + .147 (ADV)

 

 

Period Price AIP ADV Demand Seasonal Forecast Index Final Forecast

March 2018 $8.10 $8.50 $11.3 18.5811 .878546 16.3244

April 2018 $8.15 $8.60 $11.7 18.76065 .918114 17.2244

May 2018 $8.30 $8.90 $12.0 18.959 .958301 18.1684

 

 

15- Provide a case conclusion based on above analysis.

 

Grading Criteria

Completeness/Correctness 70%

Quality of Interpretations/Analysis 20%

General Quality of Report/graphs/writing 10%

 

Due Date: Sunday March 4, 2018

DIFF vs DEMAND

DEMAND

y = 2.6166x + 15.716 R² = 0.3459

-0.29999999999999982 0.25 0.59999999999999964 0 0.25 0.20000000000000018 0.15000000000000036 -0.45000000000000018 -0.75 -0.20000000000000018 0.19999999999999929 9.9999999999999645E-2 0.39999999999999947 0.45000000000000018 0.34999999999999964 0.29999999999999982 0.5 0.5 0.39999999999999947 -4.9999999999999822E-2 -4.9999999999999822E-2 -9.9999999999999645E-2 0.20000000000000018 0.10000000000000053 0.5 0.59999999999999964 -4.9999999999999822E-2 0 4.9999999999999822E-2 0.95000000000000018 0.89999999999999947 0.70000000000000018 0.59999999999999964 14.4 15.3 16.5 16.100000000000001 16 15.5 15.2 13.9 13.3 13.12 13.8 14.8 15.3 16.3 17.5 17.399999999999999 17.100000000000001 16.8 16.5 16 15.2 15.3 15.9 16.2 17.5 18.399999999999999 19.399999999999999 19.100000000000001 18.7 18.2 18.399999999999999 17.5 17.100000000000001

DIFF

 

 

Demand

 

 

 

ADV. vs. DEMAND

 

y = 1.181x + 7.6018 R² = 0.6132

5.3 6.75 7.25 7.3 7.2 6.5 6.75 6.89 5.8 5.5 6.5 6.25 7 6.9 6.8 6.8 7.1 7 6.8 6.5 8.1 7.7 7.3 7.5 8.1 8.3000000000000007 8.6999999999999993 9.1999999999999993 8.4 8.8000000000000007 9.5 9.3000000000000007 9.1 14.4 15.3 16.5 16.100000000000001 16 15.5 15.2 13.9 13.3 13.12 13.8 14.8 15.3 16.3 17.5 17.399999999999999 17.100000000000001 16.8 16.5 16 15.2 15.3 15.9 16.2 17.5 18.399999999999999 19.399999999999999 19.100000000000001 18.7 18.2 18.399999999999999 17.5 17.100000000000001

ADV

 

 

Demand

 

 

 

AIP vs. DEMAND

DEMAND

y = 2.0003x + 4.3142 R² = 0.0895

5.8 6 6.3 5.7 5.85 5.8 5.75 5.85 5.65 6 6.1 6 6.1 6.2 6.1 6.1 6.2 6.3 6.1 5.75 5.75 5.65 5.9 5.65 6.1 6.25 5.65 5.75 5.85 6.25 6.3 6.4 6.5 14.4 15.3 16.5 16.100000000000001 16 15.5 15.2 13.9 13.3 13.12 13.8 14.8 15.3 16.3 17.5 17.399999999999999 17.100000000000001 16.8 16.5 16 15.2 15.3 15.9 16.2 17.5 18.399999999999999 19.399999999999999 19.100000000000001 18.7 18.2 18.399999999999999 17.5 17.100000000000001

AIP

 

 

Demand

 

 

 

Price vs. DEMAND

DEMAND

y = -4.6991x + 43.4 R² = 0.4109

6.1 5.75 5.7 5.7 5.6 5.6 5.6 6.3 6.4 6.2 5.9 5.9 5.7 5.75 5.75 5.8 5.7 5.8 5.7 5.8 5.8 5.75 5.7 5.55 5.6 5.65 5.7 5.75 5.8 5.3 5.4 5.7 5.9 14.4 15.3 16.5 16.100000000000001 16 15.5 15.2 13.9 13.3 13.12 13.8 14.8 15.3 16.3 17.5 17.399999999999999 17.100000000000001 16.8 16.5 16 15.2 15.3 15.9 16.2 17.5 18.399999999999999 19.399999999999999 19.100000000000001 18.7 18.2 18.399999999999999 17.5 17.100000000000001

Price

 

 

Demand

 

 

 

Time Series Plot of DEMAND

DEMAND

y = 0.1173x + 14.3 R² = 0.4775

14.4 15.3 16.5 16.100000000000001 16 15.5 15.2 13.9 13.3 13.12 13.8 14.8 15.3 16.3 17.5 17.399999999999999 17.100000000000001 16.8 16.5 16 15.2 15.3 15.9 16.2 17.5 18.399999999999999 19.399999999999999 19.100000000000001 18.7 18.2 18.399999999999999 17.5 17.100000000000001

Time Period

 

 

Demand

 

 

 

Time Series Plot of ADVERTISING

ADV

y = 0.0916x + 5.8024 R² = 0.663

5.3 6.75 7.25 7.3 7.2 6.5 6.75 6.89 5.8 5.5 6.5 6.25 7 6.9 6.8 6.8 7.1 7 6.8 6.5 8.1 7.7 7.3 7.5 8.1 8.3000000000000007 8.6999999999999993 9.1999999999999993 8.4 8.8000000000000007 9.5 9.3000000000000007 9.1

Time Period

 

 

Advertising

 

 

 

Time Series Plot of Price Difference

DIFF

y = 0.0163x – 0.0552 R² = 0.1816

-0.29999999999999982 0.25 0.59999999999999964 0 0.25 0.20000000000000018 0.15000000000000036 -0.45000000000000018 -0.75 -0.20000000000000018 0.19999999999999929 9.9999999999999645E-2 0.39999999999999947 0.45000000000000018 0.34999999999999964 0.29999999999999982 0.5 0.5 0.39999999999999947 -4.9999999999999822E-2 -4.9999999999999822E-2 -9.9999999999999645E-2 0.20000000000000018 0.10000000000000053 0.5 0.59999999999999964 -4.9999999999999822E-2 0 4.9999999999999822E-2 0.95000000000000018 0.89999999999999947 0.70000000000000018 0.59999999999999964

Time Period

 

 

Difference

 

 

 

Time Series Plot of AIP

AIP

y = 0.0074x + 5.8641 R² = 0.0843

5.8 6 6.3 5.7 5.85 5.8 5.75 5.85 5.65 6 6.1 6 6.1 6.2 6.1 6.1 6.2 6.3 6.1 5.75 5.75 5.65 5.9 5.65 6.1 6.25 5.65 5.75 5.85 6.25 6.3 6.4 6.5

Time Period

 

 

AIP

 

 

 

Time Series Plot of PRICE

PRICE

y = -0.0089x + 5.9193 R² = 0.1474

6.1 5.75 5.7 5.7 5.6 5.6 5.6 6.3 6.4 6.2 5.9 5.9 5.7 5.75 5.75 5.8 5.7 5.8 5.7 5.8 5.8 5.75 5.7 5.55 5.6 5.65 5.7 5.75 5.8 5.3 5.4 5.7 5.9

Time Period

 

 

Price